
Design of an audio oscilloscope application

Fons ADRIAENSEN,

Casa della Musica,
Pzle. San Francesco 1,
43000 Parma (PR),

Italy,
fons@linuxaudio.org

Abstract

This paper documents some aspects of the design of
zita-scope, an Audio Oscilloscope application for the
GNU/Linux system. It is designed to permit accu-
rate display and measurements on audio waveforms
captured from any source via the Jack audio server.
Topics covered include performance requirements, an
analysis of some problems that need to be considered,
and an overview of the implemention structure. The
software will be available at the time this paper is pre-
sented at the 2013 Linux Audio Conference in Graz.

Keywords

linux, oscilloscope, audio measurement, time-domain,
jack

1 Introduction

The oscilloscope has for a long time been a stan-
dard instrument for any engineer developing au-
dio equipment, and in fact for almost everyone
’doing electronics’. In the all-digital era its im-
portance in an audio related context may have
declined a bit, except for debugging digital audio
hardware. Fact is that many measurements on
audio systems are better performed using spec-
tral analysis or dedicated tools, but in some cases
the ability to view the time-domain waveform and
perform measurements on it remains essential.

Very few Linux applications for this use seem
to exist. Some apps (e.g. AMS and Pd) include
a ’scope’ module or object, but these scopes are
little more than a toy. They allow the user to
see that a waveform is indeed a sine or a square
wave, or to get an idea of the waveform enve-
lope, but there it ends. The only more ambitious
application found by the author at the time of
writing was something called xoscope [1]. After
some patching it compiled, but it takes its inputs
from /dev/dsp, EsounD or some esoteric hard-

Figure 1: A sampled sine wave

ware only, doesn’t know about ALSA or Jack, and
the user interface really looks very dated. Proba-
bly its development has stopped years ago.

Reasons for this state of affairs are clear
enough: ’technical’ applications (as opposed to
those meant for creating music) are a minority
interest, and actually creating a usable software
scope isn’t as simple as it seems — there is a lot
more involved than just ’plotting the samples’.

2 Requirements

Displaying samples is what any serious oscillo-
scope application must not do. If a signal contains
any significant energy above say 1/10 of the sam-
ple rate, the sample values provide a very bad or
at least a quite unintuitive visual representation
of the actual waveform. See for example Fig.1.
After some training one may be able to recognise
this as a 14 kHz sine wave sampled at 48 kHz,
but in general it’s near impossible to obtain any



meaningful information from such a display.

Assuming a scope will be used to perform mea-
surements and not just as a visual gadget, the
following should be considered essential:

• An accurate and stable display of the analog
waveform corresponding to a stream of sam-
ples.

• A wide range of calibrated display ranges and
resolutions in both the time and amplitude
domains.

• At least two and preferably more simultanu-
ous channels.

• A flexible and accurate system allowing the
user to capture particular events in an audio
signal.

• The ability to store a signal and examine it
at all available gain and time resolution set-
tings.

• Calibrated markers to aid accurate measure-
ment.

• Responsive user controls, e.g. changing dis-
play parameters should produce an almost
immediate result.

And less essential but nice to have:

• Facilities to perform more complex measure-
ments, e.g. the RMS value of a range, spec-
trum, etc.

• Remote control, allowing the applicatin to be
configured by and report to automated test
systems or scripts.

• ’Reasonable’ CPU and other resource usage.

3 Problem analysis

3.1 Triggering

While a scope can be used in free running mode,
in most cases a triggered display will be used. The
principle is illustrated in Fig.2. The user will se-
lect a trigger condition, for example a positive go-
ing zero crossing. The start of the displayed range
will then be at a fixed offset td from that point, se-
lected by the user. In many cases the trigger point
will be the start of the displayed range (case A in
the figure), but even most analog scopes offer a

t

trigger

display range

AD B

C

t
d

Figure 2: Trigger and display range

delayed trigger option (case B), with a delay that
can be much longer than the displayed range. A
digital scope can easily store the signal, and al-
low to display part of the signal before the trigger
(cases C and D). This is very useful when the
trigger condition is the consequence of something
that happened before and which the user wants
to investigate.

Triggering can be continuous or single shot. In
the first case, if a trigger has been found, and as
soon as enough signal has been captured to fill the
display and all of it is processed, the system can
start looking for the next trigger and the cycle
repeats. This could result in a very high update
frequency (if the display range is short and close
to the trigger) which would just lead to an ex-
cessively high CPU load without improving the
visual result. In such cases looking for the next
trigger should be delayed by 50 milliseconds or so.

In the single shot mode, signal capturing will
stop at some point after the displayed range, al-
lowing the user to examine all of the stored signal.
In that case, the position of the trigger point in
the stored buffer becomes a parameter that should
be controllable by the user — this determines how
much he/she will be able to scroll forward or back
from the initial display range.

The usual trigger condition is the signal cross-
ing a given value in a specified direction, up or
down. This point needs to be determined with
high accuracy. Consider the following conditions:
we are looking in continuous trigger mode at some
high frequency waveform, with a display range of
50 microseconds (one period at 20 kHz). Assume
the display is 1000 pixels wide. Then each pixel
corresponds to 0.05 microsecond, and if we want
a stable display the jitter on the trigger position
must be at least ten times smaller than that value,



say 5 nanoseconds or around 1/4000 of a sample
at a sample rate of 48 kHz. Simple linear or even
cubic interpolation on the original samples won’t
be sufficient to achieve this .

The solution used in zita-scope is to first up-
sample the signal selected as the trigger source by
a factor of 5. This means that even in the worst
case — a sine wave near half the sample frequency
— in each half cycle there will always be samples
covering the range of -0.95 to 0.95 times the am-
plitude, and triggering within that range will be
reliable. Assume the trigger level is V with the
signal going up. We scan the interpolated wave-
form for two consecutive samples v0 and v1 such
that v0 ≤ V ≤ v1. When these are found, the sig-
nal is locally upsampled by a factor of 25, and we
search for v0, v1, v2 and v3 such that v1 ≤ V ≤ v2.
Given these we can find the best fitting parabola
f(x) = ax2+bx+c with f(0) = v1 and f(1) = v2.
Solving the quadratic equation then provides the
exact location of the trigger point, with a worst
case error of around 1/100000 of a sample at the
original sample rate. The calculations are quite
simple but require some attention to cover spe-
cial cases, e.g. the quadratic coefficient could be
near zero.

Another option, usually not available on analog
scopes, is to trigger on the first positive or neg-
ative peak exceeding a given value. This can be
done using a similar method, in this case searching
e.g. for three samples v0, v1, v2 with v0 < v1 > v2,
and then solving the derivative of the quadratic
equation.

Some other triggering modes are available in
the first release of zita-scope. Apart from the
four normal (displayed) inputs, a separate trig-
ger input is provided. This can be used in the
way described above, or it can be put in ’digital’
mode, meaning that the trigger position will be
the first sample crossing a given value, e.g. an
impulse provided by some external software.

Another option is the manual trigger mode.
Clicking a button in the GUI generates a single
sample pulse on a trigger output, and the trig-
ger point is exactly one period later (looping the
pulse back to the digital trigger input would give
the same result). This can be used to measure
e,g, the impulse response of a filter.

Finally, it is also possible to trigger on a MIDI
note-on event delivered via Jack-midi, for example

to test the latency of a soft synth.

3.2 Waveform display

As already illustrated by Fig.1, displaying the
waveform corresponding to a sampled signal in-
volves more than just plotting the sample values.
A digital audio scope could have a horizontal scale
ranging from a second per grid division down to
a microsecond, a range of one to a million. In
all cases the user wants to see a more or less ac-
curate representation of the waveform. For an
analog scope this is no problem as both the signal
and the display device have ’infinite’ resolution.
For a digital scope we need to consider that the
waveform is sampled and the display consists of
discrete pixels.

The first question is which graphics library will
be used. On Linux, the choice is between the basic
X11 drawing routines and Cairo [2]. GUI toolsets
offering a ’canvas’ object will also use one of these.
X11 graphics are defined entirely in terms of pix-
els. Cairo offers subpixel coordinates and anti-
aliased line drawing. This provides a much better
visual quality, but not a higher resolution.

On recent multi-core hardware there is really
no reason for not using Cairo or something sim-
ilar. The situation is different if somewhat older
systems are considered, e.g. a single core 2 GHz
Pentium 4. On such hardware, when drawing four
waveforms 20 times per second on a full screen
window, using Cairo can easily take the CPU
power to its limits.

The solution adopted in zita-scope is to provide
both. By default Cairo will be used in all cases,
but there is an option to use X11 when the dis-
play is updated at a high frequency, automatically
switching to Cairo in all other cases.

Assume the display is showing one or a few cy-
cles of a sine wave, i.e. each cycle has a non-
trivial width on the screen. An accurate display
of say 1000 by 1000 pixels requires something like
70 points per cycle in that case. This ensures that
the extreme values shown are no less than 0.999
times the real peaks (i.e. less than half a pixel er-
ror), and the waveform doesn’t look like a series
of connected straight lines. Since the frequency
could be near half the sample rate, this would re-
quire upsampling by a factor of of at least 35.

A brute-force technique would be to always up-
sample by a factor of at least 35. But this would



be very inefficient in almost all cases. Consider a
display that is 100 ms wide — this would mean
168000 points after resampling, and most of the
effort spent computing and displaying them would
be wasted as the display doesn’t have the resolu-
tion required to show all that detail. Clearly some
better idea is needed.

To get a grip on the issues involved we will use
the following parameters:

• Fsig : the original signal sample frequency,
e.g. 48 kHz.

• Fpix : the pixel frequency. For example if we
have 1 millisecond per division and a division
is 100 pixels, then Fpix is 100 kHz.

• Fres : the sample frequency after upsam-
pling.

Zita-scope uses two different algorithms and
display routines, depending on some of those pa-
rameters.

If Fpix/Fsig ≥ 35, we compute one sample per k
pixels on the x-axis, with k integer. These points
are then plotted as a sequence of straight lines.
This provides the best that can be done when
using X11 (unless we would implement some ad-
hoc anti-aliasing scheme), and Cairo will show a
smooth anti-aliased line. In this case we have:

k = bFpix/(35× Fsig)c
Fres = Fpix/k

In practice the value of k is limited to some
small value (currently 5, so there will be at least
one point every 5 pixels) to avoid having too long
straight lines.

In the other case, if Fpix/Fsig < 35, each x-axis
pixel is assumed to represent a range of time, and
we compute the minimum and maximum values
the signal will take within that interval. The re-
sulting data are then plotted as a series of vertical
lines, one for each x-axis pixel. For X11 this is
again more or less the best we can do. But this
scheme doesn’t work well when using Cairo if the
signal doesn’t contain significant high (relative to
Fpix) frequency energy, and the resulting plot is
reduced to a line instead of being a broader band
of pixels. The result isn’t much better than for
X11 as we have in effect disabled Cairo’s anti-
aliasing capabilities. This situation arises if the

(a) (b)

Figure 3: Connecting segments

Figure 4: Visual effect of connecting segments

waveform is monotonic within each time interval
represented by a single pixel. Fortunately there is
an simple solution, which is illustrated in Fig. 3.

In the right half of (a) we have a waveform that
can be assumed to be representable by a smooth
line. In this case we can replace the vertical seg-
ments by connected lines just by moving the x-
coordinates by half a pixel, and splitting the verti-
cal segment at an extreme into two lines, as shown
in (b). This only requires the original x,min,max
data, and results in a dramatic improvement in
display quality, as illustrated by Fig.4.

To compute the min,max pairs the display al-
gorithm upsamples the original data by a factor
of at least 6, and such that we have a sample on



every border between two adjacent pixels — this
ensures that there will be not gaps between seg-
ments. The extreme values can then be found
using inverse quadratic interpolation. This is es-
sentially the same algorithm used to trigger on
an peak, except that the function value is com-
puted instead of the argument, and considerably
less precision is required.

In this case we have

k = d6× Fsig/Fpixe
Fres = k × Fpix

The table below shows the resulting display pa-
rameters as a function of the horizontal resolution,
for Fsig = 48 kHz, and 100 pixels per division.
The SPP value is the number of samples (after
upsampling) per horizontal pixel.

T/Div Fres/Fsig SPP
1 s 6.000000 2880/1

0.5 s 6.000000 1440/1
0.2 s 6.000000 576/1
0.1 s 6.000000 288/1

50 ms 6.000000 144/1
20 ms 6.041667 58/1
10 ms 6.041667 29/1
5 ms 6.250000 15/1
2 ms 6.250000 6/1
1 ms 6.250000 3/1

500 us 8.333333 2/1
200 us 10.416667 1/1
100 us 20.833333 1/1
50 us 41.666667 1/1
20 us 52.083333 1/1
10 us 52.083333 1/2
5 us 41.666667 1/5
2 us 104.166667 1/5
1 us 208.333333 1/5

In this example the switch between the two al-
gorithms discussed above occurs between 100 and
50 usecs per division.

Note that in both these cases 1 sample per pixel
is computed, but in a different way. For the first
algorithm the single sample corresponds to the
center of an horizontal pixel. For the second it is
positioned on the border between pixels.

To obtain this exact alignment of the upsam-
pled signal to the pixel grid we must initialise the

jack ports

lock-free buffer

capture buffer

display buffer

display

plotting routines

markers

jack_process()

upsampling

min/max

time 
trigger

markers

gain

gain

time 

offset

trigger logic and

processing

Figure 5: Processing flow

phase of the polyphase filter used by the resam-
pling algorithm to the required value. The current
release of zita-resampler includes support for this.

4 Software structure

4.1 Data flow

Figure 5 shows the main elements of the imple-
mentation. Almost no work is done in the Jack
callback, it just copies the input signals to a lock-
free buffer. Apart from that it contains some code
to support the manual and MIDI trigger modes.
All the rest is done in a non real-time context, so
zita-scope will impose only a very light load on
the Jack processing graph.

The lock-free buffer is around 1.5 seconds long.
In single-trigger mode input is discarded until the



user enables the next trigger, but the lock-free
buffer it is used to store the last second of input.
This ensures that this data is always available at
the next trigger (which may be a manual one).

The trigger logic determines which part of the
input is copied to the capture buffer. In contin-
uous mode this will be little more than the dis-
played range — if the user changes the trigger
position w.r.t. to the display range this is taken
into account on the next trigger. In single-trigger
mode the capture buffer can store up to a few
seconds of data, allowing the user to examine any
part of it. To allow triggering on a wide range
of signal levels the input gains set in the GUI are
taken into account by the trigger algorithms, but
the signals written to the capture buffer are al-
ways the original ones without any gain applied.

The following step implements one of the two
algorithms presented in the previous section, de-
pending on the selected display range. These
computations are performed when the contents
of the capture buffer are updated by the trigger
logic, or ’on demand’ when the user changes the
time axis parameters.

The plotting routines finally display the data on
the screen. Any gain and vertical offset selected
by the user are only taken into account at this
point, so changing the these parameters does not
require recomputing the display buffer data.

4.2 Display markers

To perform accurate measurements zita-scope of-
fers various types of on-screen markers, shown
as vertical or horizontal dotted lines on the dis-
play. Their absolute and relative positions are
also shown in numerical form. These numerical
values are always computed from the original sig-
nal stored in the capture buffer, not from the dis-
play data, and are not modified by any gain or
offset settings.

Time axis markers can be positioned manually,
or snap to a zero crossing or a peak, using the
same algorithms as for triggering. Amplitude axis
markers can be set manually, or they can follow
the time axis ones on a selected channel, or snap
to exact peak values. More complex measure-
ments (RMS levels, spectrum,. . . ) may be im-
plemented in future releases of the application.

4.3 Additional facilities

Zita-scope offers some additional convenience
functions:

• Storing and recalling the complete state of
the instrument, including the capture buffer.
The data is stored as a regular CAF audio file
with the instrument settings in a dedicated
GUID chunk.

• Creating a PNG file of the current dis-
play. For images to be included in printed
documents the display background can be
changed to white.

5 Acknowledgements

The author has contemplated writing an oscillo-
scope app for years, but kept postponing it un-
til some Linux audio users got impatient and ’in-
creased the pressure’. Without them zita-scope
probably wouldn’t exist.

Writing this application in the relatively short
time it finally took was possible only because
of the existence of some excellent and well-
documented software taking care of some aspects,
in particular Jack and Cairo.

A sincere thanks also to the (near future) beta-
testers who will without doubt provide invaluable
feedback and suggestions for improvements.

References

[1] T. Witham and B. Baccala, “Xoscope
for Linux.” http://Xoscope.sourceforge.
net/, 2009. [Accessed 27/1/2013].

[2] K. Packard et al., “Cairo.” http://www.
cairographics.org/. [Accessed 27/1/2013].

http://Xoscope.sourceforge.net/
http://Xoscope.sourceforge.net/
http://www.cairographics.org/
http://www.cairographics.org/

	Introduction
	Requirements
	Problem analysis
	Triggering
	Waveform display

	Software structure
	Data flow
	Display markers
	Additional facilities

	Acknowledgements

