
Controlling adaptive resampling

Fons ADRIAENSEN,

Casa della Musica,
Pzle. San Francesco 1,
43000 Parma (PR),

Italy,
fons@linuxaudio.org

Abstract

Combining audio components that use incoherent sam-
ple clocks requires adaptive resampling - the exact ra-
tio of the sample frequencies is not known a priori and
may also drift slowly over time. This situation arises
when using two audio cards that don’t have a common
word clock, or when exchanging audio signals over a
network. Controlling the resampling algorithm in soft-
ware can be difficult as the available information (e.g.
timestamps on blocks of audio samples) is usually in-
exact and very noisy. This paper analyses the problem
and presents a possible solution.

Keywords

Jack, ALSA, network audio, resampling

1 Introduction

Adaptive resampling is required when combin-
ing audio hardware running at incoherent sam-
ple rates into a single system. Incoherent here
means that the clocks are not derived from the
same source. Although the nominal sample rates
are known, their ratio is not exact and may even
drift over time. A fixed resampling ratio, e.g.
44100/48000, or even one that takes known errors
into account, will sooner or later require samples
to be inserted or dropped and this is in general
not acceptable.

The problem arises when adding a second sound
card to a Jack server, or when two machines, each
having their own audio hardware but no common
clock, need to exchange audio signals via a net-
work connection.

In hardware this is a relatively simple problem
to solve if both sample clocks are available or can
be extracted from the data streams. A PLL is
used to track the ratio error, and its output con-
trols a variable ratio resampler. Some professional

equipment includes such processing on selected
digital inputs.

For a sofware solution the main problem is not
the variable ratio resampling itself, but how to
control it. Audio data is handled in blocks of
typically a few milliseconds lenght, and the only
information available to control the resampling
algorithm are the timestamps for these blocks,
and in some cases data provided by e.g. ALSA’s
snd pcm avail() and similar functions. All this
information has considerable random and system-
atic errors, and it is by no means evident how to
turn it into the required smoothly changing con-
trol signal for the resampling algorithm.

None of the currently available solutions such as
the alsa in and alsa out clients that come with
Jack really gets this right. The purpose of this
paper is to analyse the problem and present a so-
lution. The algorithms discussed in the follow-
ing sections have been implemented in two new
applications, zita a2j and zita j2a wich allow to
add ALSA soundcards running at arbitrary sam-
ple rates as clients to a Jack server. Other imple-
mentations, e.g. for networked audio or allowing
to link two Jack servers running on the same ma-
chine will follow.

2 Requirements

Resampling itself, even with a variable ratio, will
not lead to any signficant loss of audio quality if
implemented correctly. The main consequences
when using fixed-bandwidth resampling (as e.g.
in libsamplerate and zita-resampler) will be a
small loss of bandwidth and some additional de-
lay. Both depend on the length of the multiphase
filter used by this algorithm, and the tradeoff be-
tween the two can be made by the user.

The effect of a non-constant resampling ratio de-



pends on the magnitude of the variation and on
its spectrum. Very slow and small changes are
equivalent to small movements of a listener w.r.t
the speakers, or a performer w.r.t. the micro-
phone. To put this in context, one sample at 48
kHz corresponds to about 7 millimeters in air. So
provided such changes are limited to a few sam-
ples and very gradual they won’t be noticed1.

Larger variations, even when quite slow, may
lead to perceptible delay and pitch changes which,
while not really degrading the audio signal qual-
ity, may not be acceptable from a musical point
of view.

But the really nasty effect of delay modula-
tion occurs when the variations contain higher fre-
quency components, even if these are quite small.
The result no longer appears as a modulation of
the signal (e.g. vibrato) but as parasitic signals,
noise or distortion. Some types of sound are very
sensitive to such phase modulation. This is really
the equivalent of jitter on the sample clock of an
A/D or D/A converter, and sadly, some of the
existing implementations of adaptive resampling
produce this at level that is some orders of mag-
nitude higher than the worst hardware.

Apart from audio quality considerations there are
some other aspects which are important. Both the
resampling, and moving audio signals between do-
mains with asynchronous periods will introduce
latency. It depends on the application if this is
acceptable or not. But at least the delay should
be stable and repeatable. Stability means that it
must not depend on e.g. whether a Jack client
implementing the resampling runs at the start or
near the end of a Jack cycle. Again, existing im-
plementations fail to meet this requirement.

Applications implementing adaptive resam-
pling can take up to a few seconds to stabilize
their control loops, and need to restart if synchro-
nisation is lost, e.g. when a misbehaving Jack
client results in a timeout of the server. This
is quite accecptable, but minor incidents such as
Jack1 skipping one or a few cycles should not
result in a change of the latency nor require a
restart.

1 Unless you are e.g. sending one channel of a stereo
pair via the resampler and the other not, but that is really
asking for trouble.

Jack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

ALSA thread

A2J

DLL DLLControl

Jack server

ALSA threadJack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

J2A

DLLControlDLL

Jack server

Figure 1: The structure of A2J and J2A

3 Problem analysis

Anyone trying to build an abstract picture of this
sort of algorithm and to reason about it will find
that it stretches his or her powers of imagination
to some degree. It helps to have a particular im-
plementation in mind. In this paper we will use
the structure of zita a2j and zita j2a as a frame-
work. However, the analysis is more general and
applies in other cases as well.

Figure 1 shows the structure of those applica-
tions. In this figure both are shown with the Jack
client connected directly to the sound card used
by the Jack server — this is the setup we would
use to measure the latency (using e.g. jack delay)
in a round-trip involving both Jack’s sound card
and the additional one.

Taking zita a2j as an example, the ALSA
thread, as regards audio processing, does little
more than transfer audio frames from the ALSA
device to a lock-free buffer. It also provides some
extra information which will be discussed later.
Keeping the ALSA thread as simple as this allows
it to run at a higher real-time priority than the
Jack server, and with a shorter period time, and
this in turn helps to obtain accurate timing infor-
mation. The actual resampling and the control
logic is performed in the process callback of the
Jack client. The structure of zita j2a is virually
the mirror image of zita a2j.

3.1 Building a model

What needs to do be done is to control the re-
sampling ratio in such a way that on average the
same number of samples enter and leave the lock-
free buffer. We also want to do this using only



very small and smooth changes of the resampling
ratio.

Monitoring the actual state of the buffer (the
number of frames stored in it) won’t work for sev-
eral reasons. The most fundamental one is that
we actually can’t observe the buffer state in any
reliable way from either side, as the other side
could be modifying it at the same time. At best
we could have an upper or lower bound. Also, this
value doesn’t change in a smooth way, but jumps
each time a period is processed on either side.
And these changes occur when the code of the
Jack process callback or the ALSA thread actually
runs, and this moment is not at all representative
of the real timing of the audio samples. For exam-
ple the process callback of the Jack client can run
at any time between the start of the current cycle
and the start of the next one, this just depends on
the position of the client in the connection graph
and on the CPU load of other clients.

The key to creating a working model is to take ab-
straction of the period based processing, including
the random timing errors, and imagine the resam-
pling algorithm as a continuous process.

Suppose we would have two continuous functions
of time, W (t) and R(t) that provide the number of
samples that have been written to resp. read from
the buffer at any time t. Then if ∆ is the required
delay of the whole process, we could evaluate the
error W (t) − R(t) − ∆ in each process callback
and use this to control the resampling ratio. This,
with some refinements and extra functionality, is
the basic algorithm used in zita a2j and zita j2a.
Remains to create those two functions. Let J(t)
be the function on Jack’s side and A(t) the one
on the ALSA side. Then for zita a2j J(t) = R(t)
and A(t) = W (t), and for zita j2a J(t) = W (t)
and A(t) = R(t).

On the Jack side, part of the solution is already
available in the server. The DLL (Delay Locked
Loop) that has been part of Jack since many years
computes in each cycle a prediction of the start
time of the next cycle, while removing most of the
jitter due to random wakeup latency. This pro-
vides a smooth and continuous mapping between
time (as measured by Jack’s microsecond timer)
and frame counts.

So we can implement J(t) by just reading the
timestamp provided by Jack’s DLL into tJ , and
summing the number of frames read from or writ-

time

Jack period

Alsa period

A(t)

J(t)

t_J

t_0A t_1A

A(t_J)

k_0A k_1A

J(t_J)

Figure 2: Delay calculation parameters

ten to the lock-free buffer in kJ . We don’t actually
need the function on Jack’s side, since we are only
interested in its value at the start of the current
period.

A similar DLL can be provided at the ALSA
side. This requires reading the wakeup time of
the ALSA device using Jack’s microseconds timer
and applying the DLL algorithm which is quite
simple. To transfer the data to the Jack side a
second lock-free queue is used. For each period
the ALSA thread sends a message containing it
current status, the computed timestamp for the
next period, and the number of frames written to
or read from the audio buffer. At the Jack side,
during each process callback these messages are
read and the frame counts are accumulated into
a variable kA1. The most recent data (tA1, kA1)
is used, along with the same from the previous
period, (tA0, kA0). Since the ALSA thread reports
the wakeup time of its next cycle, the interval
(tA0, tA1) includes the current wakeup time at the
Jack side (or in the worst case one of the endpoints
will be close), so a simple interpolation is all that
is needed to compute A(tJ). Figure 2 shows the
relevant parameters for the case zita a2j.

3.2 Resampler delay

The analysis so far has ignored the delay intro-
duced by the resampling process itself. There are
two aspects to this. First, this latency can be sig-
nificant and it must be taken into account when
defining the target value. Second, when using kJ ,
the number of frames transferred between the re-
sampler and the audio queue, as the value of J(t)
we are actually making an error. J(t) should in-
crease by exactly the same delta in each period,
the Jack period size either multiplied or divided
by the resampling ratio, but it doesn’t because it



inpdist = 2.7 samples

outdist = 4.5 samples

Figure 3: Resampler latency

is constrained to be integer. The sum will be ex-
act on average, there is no long term accumulating
error, but we are missing the fractional part.

That fractional part is actually represented by
the internal state of the resampler. To see this we
will use zita-resampler as an example. Constant
bandwidth resampling works by evaluating a FIR
filter (a near ’brickwall’ lowpass wich corresponds
to a windowed sinc() function in the time domain)
for each output sample. The central peak of the
impulse response corresponds to the current out-
put sample, and the actual coefficients used de-
pend on the position of the filter w.r.t. the input
samples. This is shown in Fig. 3, using a very
short filter. Actual resampling filters are much
longer.

When zita resampler finishes processing a block
of frames it remains in a state ready to compute
the next output sample, except that it may have
to read one or more input samples before it can
proceed. In Fig. 3 the bottom (red) dots represent
input samples and the top (blue) ones the out-
put. Solid dots are samples already used or com-
puted. The filter is aligned with the next output
sample. In this example one more input sample
is required to compute the next output, the first
non-solid one in the figure. This will not always
be the case, for example if the previous call termi-
nated because the output buffer was full it could
be that the next output doesn’t require a new in-
put sample. But in any case the distance between
the next input sample and the next output one is
well-defined and it can be expressed in either the
input or output sample rate. This value includes
the fractional part that is missing from kJ .

The Vresampler class used in zita a2j and
zita j2a provides a function inpdist() which re-

turns the current value of this delay at the input
sample rate, and this is used to correct the value
of kJ . One may ask if such a small error actually
matters. This depends on the nominal resampling
ratio. If this is not the quotient of two small inte-
gers then the fractional error is a pseudo-random
value and its effect willl be removed by the loop fil-
ter that controls the resampling ratio. The worst
case results if the two sample rates are nominally
the same. The error will be a sawtooth function
with a frequency equal to the difference between
the two actual sample rates. In this case the loop
filter may not completely remove it. The effect
was visible in test results of early implementa-
tions that did not include the correction in the
error calculation.

3.3 Closing the loop

Combining the elements presented above we can
now formulate the equations giving the delay error
for both cases. Let γ be the resampling ratio, dres
be the value returned by the inpdist() member of
the resampler, ∆ the target delay value and t = tJ
the start time of the current cycle, then

EA2J = W (t) −R(t) + dres − ∆

EJ2A = W (t) −R(t) + dres ∗ γ − ∆

Using the definitions of W () and R(), and setting

dA = A(tJ) = [kA1 − kA0]
tj − tA0

tA1 − tA0
(1)

these become

EA2J = [kA0 − kJ ] + dA + dres − ∆ (2)

EJ2A = [kJ − kA0] − dA + dres ∗ γ − ∆ (3)

This error is first processed by a second order
lowpass filter and then becomes the input to the
second order loop filter. This is very similar to the
one used in Jack’s DLL, see [Adriaensen, 2005].
The first filter is added to further reduce phase
modulation by high frequency noise on the error
value. Its bandwidth is 20 times that of the loop
filter, so it does not affect stability. The resam-
pler code adds another lowpass to smooth ratio
changes. Also this one must be dimensioned so it
does not affect operation of the loop.

The values kJ and kA1 are obtained by accumulat-
ing differences in each cycle. To make the equa-
tions above represent the actual round trip delay



error we need to initialise them with the correct
values. Since kA0 is just kA1 from the previous cy-
cle it needs no initialisation. A bit of arithmetic
(which is left as an exercise for the reader and
wich may tickle his or her powers of imagination
a bit) will show that the correct initial values are

kJ = −PJ/γ

kA1 = PA

if the ALSA device is the input, and

kJ = PJ ∗ γ
kA1 = −PA

in the other case, with PJ and PA being the Jack
and ALSA period sizes, and γ the resampling ra-
tio.

The key to understand this is that at any time
the delay must be the sum of the number of frames
in both hardware buffers, the lock-free queue, and
the resampler, while taking the different sample
rates into consideration.

A related matter is to determine the target
round-trip delay value. Some more (simple) arith-
metic will show that

∆min,A2J = Tres + 2TJ + (1 + c)TA

∆min,J2A = Tres + 2TJ + 2TA

where Tres is the delay of the resampler, TJ and
TA the Jack and ALSA side period times, and c
is the maximum expected wakeup latency of the
ALSA thread, e.g. 1/2 when this thread is allowed
to run half a cycle late. These values allow for
worst case conditions, e.g. a Jack client running
near the end of the cycle.

3.4 Improving the settling time

The system discussed so far will provide a con-
stant processing delay, but with the loop running
at is normal bandwidth (around 0.05 Hz in the
current implementation) it could take a long time
to reach the target value ∆. We can do two things
to speed up convergence of the loop. One is to run
the loop filter at a higher bandwidth initially. The
other is to use the first delay error measurement
to force a situation close to the required one, and
then let the loop take care of the remaining error.
This requires modifying the state of the lock-free
queue. Note that once the system is running we

can’t set the number of frames in the queue to any
specific value in a safe way (as the other side may
be accessing the queue at the same time). The
only thing we can do is force a relative change by
either reading or writing a number of frames, and
that is fact all we need.

If N is the delay error rounded to the nearest
integer, then for the A2J case we set kJ = kJ +N
and read N frames from the queue, and for the
J2A case we set kJ = kJ − N and write −N
frames to the queue. Adjusting kJ removes most
of the error from the model, and applying the cor-
responding change to the queue ensures that the
model remains in sync with the actual situation.

Both example applications do remove the ini-
tial error in this way, then run the loop at higher
bandwidth for the first 4 seconds.

4 Implementation details

4.1 Delay error calculation

The kJ , kA0 and kA1 values used in (1,2,3) are
integers that are incremented by frame counts in
each iteration, so they will overflow at some time.
Since we only ever take differences of those, the
overflow doesn’t matter. But this part of the cal-
culation must be done as a subtraction of integers
without conversion to a floating point value, as
suggested by the square brackets in the equations.
The remaining parts can be done safely in floating
point since these terms are recomputed each time
and there will be no accumulating roundoff error.

Jack represent its microseconds timer as a 64-
bit integer type. These are difficult to use in
calculations so they are converted to double. To
avoid loss of precision, the actual value of tJ , tA0

and tA1 is the microseconds time masked to 28
bits, and divided by 106 to obtain seconds. This
representation will wrap around every 268.4 sec-
onds or so. Again since we are always taking dif-
ferences this is easy to detect and correct.

4.2 Error recovery and reporting

In case of a fatal error in the ALSA device or a
timeout of the Jack server there is no alternative
but to restart the loop initialisation. The two ap-
plications discussed here contain some state man-
agement code to allow this without having to
restart the actual processes. This uses a third
lock-free queue (not shown in Fig. 1) to send com-
mands from the Jack side to the ALSA thread.



When restarting the loop will settle quite fast, as
the previous resample rate correction can be re-
used.

The Jack1 server will occasionally skip some
cycles while creating or removing clients or when
making port connections. This can be detected
and handled quite easily and without introducing
any errors in the loop. The particular implemen-
tation of the lock-free audio queue allows it to
recover from overflow or underflow conditions by
just reading or writing the number of frames that
were missed before. When doing this, the same
adjustment is made to kJ to remove the error from
the delay calculation.

A fourth lock-free queue is used to convey sta-
tus and optional monitoring information for out-
put in the main thread.

4.3 The lock-free queue

When recovering from skipped cycles the lock-free
audio queue may be in an overflow or underflow
condition. The same is true when removing the
initial delay error as discussed in 3.4. Also, the
value of N used there can be positive or negative.

The lock-free queue must implemented in a way
that maintains correct read and write counters
and the corresponding data pointers at all times.
It must also allow logical read or write operations
of any number of items, including negative ones.

Such an implementation need not be more com-
plicated than some existing ones, and in fact it can
be much simpler. The C++ class used in zita a2j
and zita j2a uses a 2N buffer size as would most.
It maintains read and write counters as 32-bit in-
tegers. These are just incremented by the num-
ber of items the user claims to have read or writ-
ten, without enforcing any limits. The read and
write indices are the respective counters modulo
the buffer size. Since the buffer size divides the
232 range of the counters, these can be allowed
to overflow without any consequence. It is the
user’s responsability to avoid buffer overflow or
underflow if that matters, and the class provides
the necessary information to make this easy, so no
functionality is lost by this particular implemen-
tation.

5 Results

Figure 4 shows the result of a 1 kHz sinewave sig-
nal processed by zita j2a, with the sample rates

Figure 4: zita-j2a, 48.0 to 44.1 kHz

Figure 5: zita-j2a, 48.0 to 48.0 kHz

being 48 kHz at the Jack side and 44.1 kHz for the
ALSA device. The Y axis is the phase of the out-
put signal (w.r.t. to the generator) in degrees, the
X-axis is in centiseconds. The loop stabilises in
about 15 seconds. After that time, variations are
less than 0.5 degrees peak-to-peak. One degree
at 1 kHz corresponds to 2.78 microseconds. The
small bump at around 145 seconds is the result of
switching the desktop workspace. This measure-
ment was done one a single CPU machine, run-
ning a standard (unpatched) kernel and having no
HW video acceleration.

Figure 5 is the result of the same test but with
both ends running at 48.0 kHz. There is a pe-
riodic dip every 83 seconds, which corresponds



to a frequency of around 0.012 Hz. This is the
difference between the period frequencies of both
soundcards. Every 83 seconds the interrupts of
the two cards occur at almost the same time and
compete for the CPU. This effect would probably
not be visible on an SMP machine. It’s harmless
in practice as the delay changes are very small
and smooth.

6 Acknowledgements

The results reported in this paper build on the
work done by the Jack and ALSA developers. A
particular thanks to the members of the respec-
tive mailing lists for the prompt answers to all my
questions.

References

Fons Adriaensen. 2005. Using a DLL to fil-
ter time. Available at http://kokkinizita.
linuxaudio.org/papers/index.html.

http://kokkinizita.linuxaudio.org/papers/index.html
http://kokkinizita.linuxaudio.org/papers/index.html

	Introduction
	Requirements
	Problem analysis
	Building a model
	Resampler delay
	Closing the loop
	Improving the settling time

	Implementation details
	Delay error calculation
	Error recovery and reporting
	The lock-free queue

	Results
	Acknowledgements

