
Digital State-Variable Filters

Fons ADRIAENSEN
fons@linuxaudio.org

1 Introduction

In the analog signal processing world the state-
variable filter is widely used. Figure 1 shows
the usual way to implement it. There are
many reasons for its popularity. Using the
right active components for the frequency range
of interest, it will always be stable. It pro-
vides highpass, resonance (bandpass) and low-
pass outputs. Resonance or cutoff frequency
and Q-factor can be controlled separately with-
out problem, making it a good choice for e.g.
parametric equalisers in audio applications.

HP

BP

LP

R R

C C

R1

R1

R1

R2

R3

IN

Figure 1: Analog SV filter

In the digital world, the biquad filter shown in
Fig. 2 filter is much more popular. Again there
are reasons for this. It’s a ’textbook’ filter that
every DSP engineer is supposed to know. Many
filter design tools ouput ’second order sections’
and provide biquad coefficients for each of them.

Z
-1

Z
-1

a0 a1 a2

IN

OUT

b1 b2

Figure 2: Biquad filter

However, the biquad is not without prob-
lems. One of them is potential instability in
case the coefficients are interpolated, for exam-
ple to avoid ’zipper noise’ in audio equalisers.
Another problem is numerical precision. For
very low (relative to sample rate) values of the
resonance frequency one finds coefficient values
of the form 2− ε or 1− ε, with very small ε pro-
portional to design frequency. Even for audio
applications at 48 kHz sample rate this means
that using 32-bit floating point values can result
in significant loss of precision.

The digital state-variable filter does not have
these problems. So one may wonder why it is
not used more often. The main reason seems to
poor documentation.

2 The digital SV filter

If the delay elements in the biquad are replaced
by integrators we get something very similar to
the analog SV filter. This is shown in Fig 3.

Z
-1

Z
-1

a0 a1 a2

IN

OUT

b1 b2

(HP) (BP) (LP)

Figure 3: Digital SV filter

By shuffling the multipliers around many
equivalent forms of Fig 3 can be found. Figure 4
shows the one that will be used in the remainder
of this report. Here the feedback coefficients are
constant, and instead we have integrator gains
c1 and c2. This is similar to the analog form,
except that since both feedack coefficients are
fixed, we now control the Q-factor via the ratio



Z
-1

Z
-1

d0 d1 d2

c1 c2

IN

OUT

(HP) (BP) (LP)

Figure 4: Alternative implementation, used in this report

c2/c1, and the bandpass gain will be 1 instead
of Q at the resonance frequency.

The C code to process a block of n samples
would be something like

for (i = 0; i < n; i++)
{

x = inp [i] - z1 - z2;
out [i] = d0 * x + d1 * z1 + d2 * z2;
z2 += c2 * z1;
z1 += c1 * x;

}

where z1 and z2 are the state of the filter.

Given F and Q, and taking frequency warp-
ing in to account, the intuitively obvious way to
compute c1 and c2 would be:

w = 2 ∗ tan(π ∗ F )

c1 = w/Q

c2 = w ∗Q

where F is the resonance frequency divided by
the sample rate.
For very low values of F , the responses at the
points marked (HP ), (BP ) and (LP ) in Fig. 4
will indeed be similar to the those of the analog
version. But for higher values of F this is no
longer true.

Figure 5: (HP), (BP) and (LP)

Figure 5 shows what happens for F = 1/24
and Q = 0.71. The passband gains of the
highpass and bandpass are too high, and the
lowpass and bandpass gains are not zero at
the Nyquist frequency (which due to frequency
warping maps to infinity in the analog domain).

Things get worse for higher frequencies and
Q factors, up to the point where the filter will
become unstable.

As shown in the next section, it is actually
quite easy to get the correct responses. What
is surprising is that there seem to be no other
publications pointing out how to do this. Most
authors, even Julius Smith (Smith, 2020), just
ignore the subject.

3 Exact HP, BP and LP

In order to get the exact responses we need to
modify the calculation of c1 and c2 (this will
ensure stability), and combine the (HP ), (BP )
and (LP ) signals in the correct proportions.

The proof of all the equations below is left
as an exercise to the reader (it only takes some
basic algebra, pen and paper).

The calculation of c1 and c2 is the same in all
three cases. Given F and Q

w = 2 ∗ tan(π ∗ F )

a = w/Q

b = w2

c1 = (a+ b)/(1 + a/2 + b/4)

c2 = b/(a+ b)

3.1 Highpass

For a highpass filter:

d0 = 1 − c1/2 + c1 ∗ c2/4
d1 = 0

d2 = 0

The C code becomes:



d0 = 1 - c1 / 2 + c1 * c2 / 4;
for (i = 0; i < n; i++)
{

x = inp [i] - z1 - z2;
out [i] = d0 * x;
z2 += c2 * z1;
z1 += c1 * x;

}

3.2 Bandpass

For a bandpass filter:

d0 = (1 − c2) ∗ c1/2
d1 = 1 − c2

d2 = 0

The C code becomes:

d1 = 1 - c2
d0 = d1 * c1 / 2
for (i = 0; i < n; i++)
{

x = inp [i] - z1 - z2;
out [i] = d0 * x + d1 * z1;
z2 += c2 * z1;
z1 += c1 * x;

}

3.3 Lowpass

For a lowpass filter:

d0 = c1 ∗ c2/4
d1 = c2

d2 = 1

The C code becomes:

d0 = c1 * c2 / 4
for (i = 0; i < n; i++)
{

x = inp [i] - z1 - z2;
z2 += c2 * z1;
out [i] = d0 * x + z2;
z1 += c1 * x;

}

Here we have used the fact that d1 = c2 to
eliminate one multiplication and addition.

Note that the three values for each of d0, d1
and d2 sum to unity.

Figure 6 shows the result of using the equa-
tions above, again for F = 1/24 and Q = 0.71.

4 Transformation of an arbitray
biquad

It is also easy to transform any given biquad
to the state variable form. Using the coefficient
names in Figs. 2 and 4:

c1 = b1 + 2

c2 = (1 + b1 + b2)/c1

d0 = a0

d1 = (2 ∗ a0 + a1)/c1

d2 = (a0 + a1 + a2)/(c1 ∗ c2)

Figure 6: Exact HP, BP, LP

References

Julius O. Smith. 2020. Digital State-
Variable Filters. https://ccrma.stanford.
edu/~jos/svf/svf.pdf.


