Aeolus
A church organ in your PC

Fons Adriaensen

2nd Linux Audio Developers Conference
ZKM Karlsruhe 28 April - 2 May 2004
Overview

- Targets
- What is an organ?
- Organ sound
- Requirements
- Short demo
- Choice of algorithm
- Synthesis editor
- Program architecture
- Audio processing
- Demo

Karl Schuke organ at St. Stephani, Helmstedt, Germany
Photo by Matthias Nagorni
A story....

Trinity Church, Wall Street, New York

- September 2001: the organ is destroyed by the corrosive dust of the twin towers.
- Summer 2003: A new instrument is installed. It features:
 - Keyboards and console hand-made by Italian craftsmen,
 - ?
Trinity Church, Wall Street, New York

- September 2001: the organ is destroyed by the corrosive dust of the twin towers.

- Summer 2003: A new instrument is installed. It features:
 - Keyboards and console hand-made by Italian craftsmen,
 - 14 high-end personal computers running Linux,*
 - 74 separately amplified audio channels, and as many speakers,
 - 33 hours of stored samples, taking 5 man-years of recording and preparation.

- Even professional organists forget they are playing an electronic instrument.

(*) "Windows was soon rejected for not being up to the task"
Trinity Church, Wall Street, New York

- September 2001: the organ is destroyed by the corrosive dust of the twin towers.

- Summer 2003: A new instrument is installed. It features:
 - Keyboards and console hand-made by Italian craftsmen,
 - 14 high-end personal computers running Linux,*
 - 74 separately amplified audio channels, and as many speakers,
 - 33 hours of stored samples, taking 5 man-years of recording and preparation.

- Even professional organists forget they are playing an electronic instrument.

(*) “Windows was soon rejected for not being up to the task”
My ambitions for Aeolus ar more modest. . .

- *Not* a 'perfect' imitation or replacement for a real organ.
- A *musical* instrument, that can be enjoyed by musicians.
- Give the user access to all parameters, to
 - modify and adapt the program to his/her own needs,
 - or even define a completey new instrument.
- Have a framework for future research and development.
What is an organ?

- "A musical instrument producing sound by blowing air through pipes, and played via a keyboard.”

- History goes back to Greek and Roman times.

- Disappeared from Western Europe at the end of the Roman Empire, preserved by and re-imported to Europe from the Byzantine culture.

- Oldest existing instruments are from the 15th century.

- A long and complicated history, linked to music history, religion and politics.

- Some important periods:
 - Baroque period in Gemany: Buxtehude, Pachelbel, Bach.
 - Second half of 20th century: the authenticity movement.

There is an enormous diversity in organ types, sizes, and sounds.
Some organ jargon

Stop : a set of pipes, one (or more) for each note, all having the same type of sound.

- Each stop can be separately switched on or off.
- Stop names are traditional or refer to other instruments.
- There are *thousands* of different stops.
- Pitch is indicated by the length in feet of the largest pipe:
 - 8 : nominal pitch.
 - 16, 32 : one or two octaves lower.
 - 4, 2, 1 : one, two or three octaves higher.
 - $2\frac{2}{3}$: one octave plus a fifth higher ($F \times 3$).
 - $1\frac{3}{5}$: two octaves plus a third higher ($F \times 5$).

Division : a set of stops controlled by the same keyboard.

- Each division is a ’mini’ organ, and also has its own character.

Organ : an instrument consisting of one or more (1...6) divisions.

- The church of the Palácio National in Mafra, Portugal, has six large organs...
Stops 1

Labial or flue stops

- No moving parts - vibrating air column
- Pitch determined by pipe length
- Pipe also acts as a filter
- Relatively soft sound
Reed stops

- Sound produced by vibrating metal spring
- Pipe mainly acts as a filter
- All sorts of weird pipe shapes
- Very bright sound
• The sound of a single pipe starts with an 'attack' phase, normally less than 0.5 seconds.
 – Each harmonic has its own attack profile.
 – Some harmonics 'overshoot' the steady state level.
 – Others only build up after a delay.

• The attack is followed by a 'steady state' phase, showing only minimal variation over time, caused by air turbulence and complex interactions with other parts.

• Many pipes also produce *chiff* - filtered noise.
 – Noise can be quite prominent during the attack.
 – There is no simple relation between the harmonic and noise spectra.
 – Noise spectrum is typical for a lattice (waveguide) filter.
Organ sound 2

Typical labial pipe spectrum

(Recording by Reiner Janke).
• The spectrum of a stop changes significantly over the range of five octaves. Notes that are close together are similar but never identical.

• Some stop combinations blend together, in others each stop remains a separate sound. This depends on the spectra, and on psycho-acoustics. Sounds are separated by
 – small differences in frequency or delay,
 – different attack profiles,
 – different direction or apparent distance.

Human hearing is very apt at picking up these hints.

• Even for a small organ, the sound is modified by reflections in the cabinet. For larger organs these can have significant delays.

• Every real organ is designed for a particular environment. A large organ needs the acoustics of a large space such as a church in order to sound good.

• The sound of a real organ is defined by the *voicing* process: each individual pipe is adjusted to arrive at a balanced sound.
Organ sound 4 : Tuning

• **Pitch**: frequency of $a_1 : 400\ldots480$ Hz.

• **Temperament**: relative tuning of the 12 notes of an octave. This poses a fundamental problem - it is impossible to get all the intervals right.

 – 12 musical fifths are equal to 7 octaves, but
 $(3/2)^{12}$ is not exactly equal to 2^7.

 – 3 musical thirds are equal to 1 octave, but
 $(5/4)^3$ is not exactly equal to 2.

• Every temperament is a compromise.

 – Optimise for a few keys only (meantone temperaments - modal music).

 – Allow all keys, but keep different character (circulating temperaments - baroque music)

 – Distribute the errors evenly (equal temperament - romantic music)

• **Temperament has significant influence on the 'character' of stops that have a prominent 3^{rd} or 5^{th} harmonic.**
Requirements

- Generators flexible enough to allow for all types of stops.
- Correct modelling of the complex attack phase of a pipe sound.
- All parameters that define a stop are a function of the note number.
- Programmable variations in delay time, frequency, spectrum, attack profile...
- Flexibility in tuning and temperament.
- Correct emulation of the acoustic environment.
- One to four divisions, up to 32 stops per division.
- The end user must be allowed to define the instrument.
- As much parameters as possible should be accessible.
- The program should run on a medium performance PC.
First demo

- General features.
- A guided tour.
- A short musical example.
Choice of algorithm 1

- Recorded samples
 - Realism and quality
 - Lots of work in recording and preparation
 - Also picks up reverb : less flexible
 - Copyright issues

- Additive synthesis
 - Very flexible
 - Intuitive mapping between parameter set and sound
 - Parameter sets can be obtained by analysis
 - Lots of parameters
Choice of algorithm 2

- **Waveguide filters**
 - Close to physical reality
 - Requires specialist knowledge and tools

- **Physical modelling**
 - High quality results
 - Complex
 - Requires specialist knowledge and tools

- **Subtractive and FM synthesis**
 - No systematic approach - results are found more or less by accident.
Choice of algorithm 2

- **Waveguide filters**
 - Close to physical reality
 - Requires specialist knowledge and tools

- **Physical modelling**
 - High quality results
 - Complex
 - Requires specialist knowledge and tools

- **Subtractive and FM synthesis**
 - No systematic approach - results are found more or less by accident.

Additive synthesis was chosen for the first release.
Choice of algorithm 3

- Up to a few hundreds of pipes can sound at the same time.
 - Wavetables are the only solution.
 - Separation of generation and rendering.
 - Allows re-use of rendering engine.

- Wavetables need to be recalculated if pitch, temperament or sample frequency are modified.

- Each wavetable consist of an attack part, and a loop.

- Loop length is determined by required frequency accuracy:
 - Maximum absolute error < 0.1 Hz.
 - Maximum relative error < 0.1 %.
 - Find integers n, k so that $n/k \sim f/F_{samp}$
 - Continued fraction algorithm provides short average loop length.
 - Wavetable length is dominated by attack phase.

- Wavetables can not be used easily to generate noise.
 - Separate solution required - not yet implemented.
Aeolus structure

Aeolus – 20 2nd LAD Conference, Karlsruhe, 28 April – 2 May 2004

All rights reserved – © 2004 F.Adriaensen
• At least three parameters are a function of both note number n and harmonic number h:
 – harmonic level,
 – attack time,
 – attack type.

• With 61 notes and 64 harmonics, this gives 11712 values for a single stop.

• First reduction:
 – Define only every 6^{th} note, and interpolate.
 – Requires fourth parameter: random variation of level.
 – Still requires up to $4 \times 11 \times 64 = 2816$ values

• Second reduction:
 – Not all 11 notes need to be defined if not necessary.
 – Manageable solution, but requires dedicated GUI.
• Other parameters are function of note number only, and defined at up to 11 points, with interpolation:
 – volume,
 – systematic detune,
 – random detune.

• Remaining parameters are:
 – pipe length (pitch),
 – stop name,
 – filename,
 – comments and copyright.

• Parameters for each stop are stored in separate files.

• Set of stops for each division and some options are defined in a configuration text file.
Additive synthesis parameters 3

Attack phase profiles.
• Only the audio thread runs in real-time mode.

• Relation between audio thread and main thread is MCV.

• Some shared memory for efficient implementation.
Audio processing - Ambisonics

- Surround sound technology developed more than 20 years ago by UK mathematician Michael Gerzon.
 - Originally developed for military applications (SONAR).
 - Aims at accurate sound field reproduction rather than ‘surround effects’.
 - The only solution for high quality 2-D or 3-D surround sound.

- First order Ambisonics B-format consist of four signals:
 - A mono signal W,
 - Three difference signals, one for each axis of 3-D space, X, Y, Z.
 - X, Y, Z correspond to the gradient of the sound field, and hence to the perceived direction of the sound.

- B-format is used internally in Aeolus and is also one of the output options.
Audio processing - Top level

Top level audio processing
Audio processing - Division

Audio processing for one division
Audio processing - Division

Audio processing for one division - implementation

- Per-pipe delay lines replaced by shared circular buffers.
- Audio data never moves, the pointers do.
- Process fragment size is always 64 samples.
The future - things to do

- Clean up the code
- Manual and documentation
- Adding ‘chiff’ generators
- More detailed control over attack phase
- Improved reverb, maybe via BruteFIR
- Add auralised headphone output
- New stops and instruments (e.g. French Romantic)
- Other synthesis algorithms
I wish to thank the following people for their contributions:

Matthias Nagorni

Martin Kares

Reiner Janke
I wish to thank the following people for their contributions:

Matthias Nagorni

Martin Kares

Reiner Janke

The ALSA and JACK teams
The parameter editor.

Question time.

More music.