
Design of a Convolution Engine optimised for Reverb

Fons ADRIAENSEN
fons.adriaensen@skynet.be

Abstract
Real-time convolution has become a practical tool
for general audio processing and music production.
This is reflected by the availability to the Linux au-
dio user of several high quality convolution engines.
But none of these programs is really designed to be
used easily as a reverberation processor. This paper
introduces a Linux application using fast convolu-
tion that was designed and optimised for this task.
Some of the most relevant design and implementa-
tion issues are discussed.

Keywords
Convolution, reverb.

1 Introduction

The processing power of today’s personal com-
puters enables the use convolution with rela-
tively long signals (up to several seconds), as
a practical audio tool. One of its applications is
to generate reverberation — either to recreate
the ’acoustics’ of a real space by using captured
impulse responses, or as an effect by convolving
a signal with synthesised waveforms or virtual
impulse responses.

Several ‘convolution engines’ are available to
the Linux audio user. The BruteFir pack-
age1 by Anders Torger has been well known for
some years. More recent offerings are Florian
Schmidt’s jack convolve2 and JACE 3 by Fons
Adriaensen.

While one can obtain excellent results with
these programs, none of them is really designed
to be an easy-to-use reverb application. An-
other problem is that all of them use partitioned
convolution with uniform partition size, which
means there is a tradeoff to be made between
processing delay and CPU load (JACE allows
the use of a period size smaller than the par-
tition size, but this does not decrease the la-
tency). While in e.g. a pure mixdown session

1http://www.ludd.luth.se/ torger/brutefir.html
2http://www.affenbande.org/ tapas/jack convolve
3http://users.skynet.be/solaris/linuxaudio

a delay of say 100 ms could be acceptable, any-
thing involving live interaction with performers
requires much smaller latency.

The Aella package written by the author is a
first attempt to create a practical convolution
based ‘reverb engine’. An alpha release4 will be
available at the time this paper is presented at
the 4th Linux Audio Conference. In the follow-
ing sections, some of the design and implemen-
tation issues of this software will be discussed.

2 Anatomy of natural reverb

If reverb is added as an effect then everything
that ‘sounds right’ can be used. If on the other
hand the object is to recreate a real acoustical
space or to create a virtual one, then we need
to observe how a natural reverb is built up, and
how it is perceived by our hearing mechanisms.

Imagine you are in a concert hall listening to
some instrument being played on stage. Pro-
vided the sound source is not hidden, the first
thing you hear is the direct sound (DS). This
will be followed after some milliseconds by the
first reflections from the walls and ceiling. The
sound will continue to bounce around the room
and a complex pattern of reflections will build
up, with increasing density and decreasing am-
plitude. This is shown in fig.1. Traditionally a
reverb pattern is divided into an initial period
of early reflections (ER) lasting approximately
50 to 80 ms, and a reverb tail (RT) that shows
a quadratic increase in density and decays ex-
ponentially. From an acoustical point of view
there is no clear border between the two regimes
— the distinction is the result of psychoacoustic
effects.

The early reflections, while being discrete,
are not heard as a separate sound, rather they
‘merge’ with the direct sound. They provide
our hearing mechanisms with important clues
as to the direction and distance of the sound

4http://users.skynet.be/solaris/linuxaudio/aella



early relfections
time

level (dB)

0 5 50 ms

exponential level decay

quadratic density increase

direct sound

Figure 1: A typical natural reverb pattern

source, and the size and nature of the acousti-
cal environment. The pattern of ER can either
reinforce or contradict the results of other mech-
anisms used by our brain to detect the location
of a sound source. For this reason it is impor-
tant, when recreating an acoustical space, that
the ER are consistent with the positioning of
sound sources. For a traditional setting with
musicians on a stage in front of the audience,
at least three (left, centre, right) and preferably
more sets of ER should be available to achieve
a convincing result. More would be necessary
in case the sound sources are all around the lis-
teners.

In concert halls used for classical music, the
lateral early reflections (from the side walls)
seem to play an important part in how the
‘acoustics’ are appreciated by the listeners. This
is often said to explain why ‘shoe-box’ concert
halls such as the ones at the Amsterdam Con-
certgebouw or the Musikverein in Vienna are
preferred over ‘auditorium’ shaped ones.

Early reflections very close to the direct sound
(less than a few milliseconds) will often result
in a ‘comb filter’ effect, and should be avoided.
Discrete reflections that are too far behind the
DS or too loud will be heard as a separate ‘echo’.
These echos occur in many acoustical spaces but
not in a good concert hall.

In contrast to the ER, the reverb tail is clearly
perceived as a separate sound. A natural reverb
tail corresponds to a ‘diffuse’ sound field with no
clear source direction. This doesn’t mean that
it has no spacial distribution — it has, and this
should be reproduced correctly. Of course, the
reverb tail will be different for each source (and

listener) position, but in general we can not hear
this difference — for the RT, only its statistical
properties seem to matter. As a result, provided
the early reflections are correct, it is possible to
use a single reverb tail for all sources.

In most rooms, the RT will show an expo-
nential decay over most of the time. This is not
always the case: some spaces with more com-
plex shapes and subspaces (e.g. churches) can
produce a significantly different pattern.

3 Requirements for a convolution
reverb engine

Taking the observations from the previous sec-
tion into account it is now possible to define the
requirements for a practical convolution based
reverb engine.

3.1 Flexibility
In order to be as flexible and general-purpose as
possible, the following is needed:

• The engine should allow to combine a num-
ber of ER patterns with one or more reverb
tails. The number of each should be under
control of the user. Separate inputs are re-
quired for each ER pattern.

• The relative levels of ER and RT, and the
shape of the RT must be controllable. The
latter can be used for effects such as e.g.
‘gated reverb’ that is cut off in the middle
of the tail.

• The engine must be able to use a number of
formats, from mono to full 3D Ambisonics.
It should also support the use of different
sample rates.



ER in

RT in

DS in

Out

Early
reflections
convolution

Reverb tail
convolution

Delay

Figure 2: Aella audio structure.

This leads to the general structure shown in
fig.2. The ER and RT inputs are always mono,
while the DS input and the output will have
the number of channels required for the selected
format.

In most cases a reverb unit like Aella will be
driven from post-fader auxiliary sends from a
mixer application and in that case the DS in-
put is normally not used. It is provided for
cases where the reverb is used as in insert, e.g.
for single channel effects, and to overcome some
potential latency problems discussed in the next
section.

3.2 Minimal processing delay
The reverb engine should ideally operate with
no processing delay, and be usable with all pe-
riod sizes when running as a JACK client. This
turned out to be the most difficult requirement
to satisfy. This is discussed in more detail in
section 4.

There is even a requirement for negative pro-
cessing delay. This occurs when the output of
the reverb is sent back into the same JACK
client that is driving it, creating a loop with
one period time delay on the returned signal.
It is possible to compensate for this: remember
that the first few (5 to 10) milliseconds after
the direct sound should not contain any ER in
order to avoid coloration. So provided the pe-
riod time is small enough, this ‘idle time’ can
be absorbed into the processing delay, provided
the DS path is not used. To enable this, Aella
provides the option to take the feedback delay
into account when loading a reverb pattern.

In case the period time is too long to do this,
another solution is to route the direct sound
through the reverb and accept a delay on all

sound. Aella will always insert the proper delay
(not shown in fig.2) into the DS path, depending
on its configuration and the period size. Doing
this also allows operation with larger processing
delay, leading to lower CPU usage.

3.3 Ease of use
It’s mainly the requirements from the previous
two sections that make general purpose convo-
lution engines impractical for day-to-day work.
Having to take all of this into account and keep
track of all impulse files, offsets, gains, etc.
when writing a configuration script will rapidly
drive most less technically inclined users away.

The solution is to automate the complete con-
volution engine configuration, using only pa-
rameters and options that make direct sense to
e.g. a musical user. This is what Aella tries to
achieve.

Aella first presents a menu of available reverb
responses to the user. When one is selected,
more information is provided, e.g. in case of
a captured real impulse response some info is
given on the original space, its reverb time, how
the recording was made, etc. A new menu is
presented showing the available ER and RT pat-
terns for the selected reverb. The user selects
the signal format, the patterns to be used, and
some options that enable him or her to trade
off CPU load against latency. Immediate feed-
back about processing delay is provided for the
latter. Finally the users clicks the ‘LOAD’ but-
ton, and then all the complex partitioning and
scheduling discussed in the next section is per-
formed, and the impulse responses are loaded.
The reverb is then ready for use.

Aella uses a single file for each reverb pro-
gram, containing all the impulse responses (even
for different sample rates and formats) and all
the extra information that is required. Since
this file has to contain binary data (the IR, in
floating point format) anyway, and given the
author’s known aversion to things like XML, it
should not come as a surprise that this is a bi-
nary file format. It is of course completely open,
and (hopefully) flexible enough to allow for fu-
ture extensions.

Presently these files are generated using a
command line tool. In future versions of Aella
this function may be integrated into the main
program.

4 Using non-uniform partition sizes

The only way to obtain zero processing delay
(in the sense that at the end of the process call-



-1 0 1 2 3 4 5 ...

cycle 0

cycle 1

A0

B0

D-2,-1

A1

B1

C0,1

D0,1

A B C D

A2

B2

D0,1

cycle 2

Figure 3: Equal load schema for (1,1,2,2) parti-
tioning

back the output signal contains the input of the
same callback convolved with the first samples
of the impulse response) is to use a partition
size equal to the period size. For small period
sizes it is infeasible to compute the entire convo-
lution using this partition size — the CPU load
would be above the limit or unacceptable — so
a scheme using a mix of sizes is required.

How to organise a non-uniform partition size
convolution so as to obtain the same CPU load
for all cycles is known to be a hard problem,
in the sense that there is no simple algorithm,
nor even a complicated one, that provides the
optimal solution in all cases. It’s an interesting
research problem to say the least. One of the
referenced papers (Garcia, 2002) will provide a
good idea of the state of the art, and of the
complexity of some of the proposed solutions.

The problem is further complicated if multi-
ple inputs and outputs are taken into consider-
ation (these can sometimes share the FFT and
inverse FFT operations), and even more if the
target platform is not a specialised DSP chip
with predictable instruction timing but a gen-
eral purpose PC, and things such as multitask-
ing and cache effects have to be taken into ac-
count.

One of the most useful results was published
by Bill Gardner as far as ten years ago (Gard-
ner, 1995). Assuming the CPU load is domi-
nated by the multiply-and-add (MAC) phases,
and is proportional to the data size, a uniform
load can be obtained if the partition sizes fol-
low a certain pattern. Figure 3 provides the
simplest example. Here we have four partitions

cycle 0

cycle 1

cycle 2

cycle 3

-1 0 1 2 3 4 5 ...

A0

B0

A1

B1

C0,1

D0,1

A2

B2

A3

C2,3

D2,3

E-4...-1

F-4...-1

B3

A B C D E F

Figure 4: Equal load schema for (1,1,2,2,4,4)
partitioning

A, B, C, and D with relative sizes 1, 1, 2, 2. The
black lines depict the work that can be started
in each cycle, for the indicated partition and
cycle number(s). For example the line labelled
‘C0,1’ represents the output generated from the
inputs of cycles 0 and 1 and partition C. In the
odd numbered cycles we would have three times
the work of the even numbered ones. But the
computation related to partition D can be de-
layed by three cycles, so it can be moved to the
next even cycle, resulting in an uniform load.

This schema can be generalised for partition
sizes following the same doubling pattern. Fig-
ure 4 shows the solution for sizes proportional
to 1, 1, 2, 2, 4, 4. The red lines in this figure
correspond to the computations that have been
moved.

There is a limit to what can be done in this
way, as the underlying assumptions become in-
valid very for small period and large partition
sizes.

Looking again at fig.4, it is clear that except
when partition A is involved, the outputs are
required only in the next or in even later cy-
cles. This is even more the case for any later
partitions (G, H, . . . of relative size 8 or more).
So part the work can be delegated to a separate
thread running at at lower priority than JACK’s
client thread (but still in real-time mode). This
will increase the complexity of the solution, as
the work for later partitions needs to prioritised



in some way in order to ensure timely execution,
but in practice this can be managed relatively
easily.

In Aella, a mix of both techniques is em-
ployed. For the reverb tail convolution a large
process delay can be accepted and compensated
for by removing the zero valued samples at the
start. It uses a minimum size of 1024 frames for
the first partition, increasing to a maximum of
8K for later parts (due to cache trashing, noth-
ing is gained by using larger sizes), and all work
is done in a lower priority thread.

There is an unexpected potential problem re-
lated to moving work to a secondary thread.
Imagine the average load is high (say 50%) and
the largest partition size is 8K, i.e. there will be
something like six such partitions per second.
The audio processing by other applications will
not suffer from the high load, as most of the
work is being done at a lower priority. But the
responsiveness of the system e.g. for GUI inter-
action, or even just for typing text in a terminal,
will be severely impaired by a real-time thread
executing for several tens of milliseconds at a
time. So the work performed in the lower pri-
ority thread can not just be started ’in bulk’ —
it has to be divided into smaller chunks started
by triggers from the higher frequency process
callback.

For the early reflections convolution the sit-
uation is quite different, as it has to provide
outputs without any delay. Depending on the
period size, Aella will use a minimum partition
length of 64 frames, and a schema similar to
fig.4 for the first few partitions. Later ones are
again moved to a lower priority thread.

The process callback will never wait for work
done at lower priority to complete — it just as-
sumes it will be ready in time. But it will check
this condition, and signal a ‘soft overrun’ (indi-
cated by a flashing light in Aella’s GUI) if things
go wrong.

For period sizes below 64 frames, Aella will
buffer the inputs and outputs, and still try to
get the best load distribution. The processing
delay will increase due to the buffering, but any
idle time before the first early reflection will be
used to compensate automatically for the in-
creased delay, in the same way as happens for
the feedback delay.

The exact scheme used depends in a quite
complicated way on the actual period size and
on some user options related to processing delay.
This was one of the more difficult to write parts

of the application, much more than the real DSP
code. The final result is that Aella will be able
to operate without any processing delay and at
a reasonable CPU load in most practical cases.

References

Guillermo Garcia. 2002. Optimal filter parti-
tion for efficient convolution with short in-
put/output delay. Audio Engineering Society
Convention Paper 5660. 113th AES Conven-
tion, Los Angeles October 2002.

William Gardner. 1995. Efficient convolution
without input-output delay. Journal of the
Audio Engineering Society, 43(3):127–136.


